
Handout Workshop Raspberry Pi in a technical environment
by Chris Hendriks (hendrikschris@yahoo.com)

1. Introduction – major computer (r)evolutions
- Business Computer; halfway the 20th century: mini and mainframe – some with private network
- Personal Computer; end 20th century: desktop, notebook, tablet, phone – all connected to internet
- Thing Computer (other names: SBC – single-board computer, controller, cyber-physical systems, embedded
systems); 2010 onwards: computers in devices – all connected to internet (IoT – internet of things)

The next major revolution will be: AI (Artificial Intelligence) for evaluating large data sets → later AI in every
device.
AI was boosted by the (valuable) bulk data produced in the social environment (apps on phone or tablet,
increased web surfing, cameras everywhere). Bulk data could only be handled by AI software. Availability of AI
is now affecting the structure of control systems in the technical environment. Initiatives in the area of linked
administrative databases are following.

 bulk data

For the technical environment this means: control and intelligence moves into every piece of equipment and
every sensor/actuators. Everything communicates with everything. A controller (for sensor or actuator) in the
development phase needs a human interface (terminal/keyboard or notebook) but in the operational phase the
controller consists of a few chips communicating with ‘the world’ through wifi or bluetooth.
The explosive growth in the number of computers and number of internet connections results in a drop in price
($10 - $50) and an increase in availability of software. But: security becomes a major issue.

For research this development has a similar impact: every component is controlled by a computer and bulk data is
produced (as main output or side product). There will be a transition from isolated measurements to a 5
dimensional data space (in a single experiment multiple parameters are measured at multiple points in space and
at multiple moments in time).

2. Raspberry Pi – single-board computer

The Raspberry Pi is a small computer. It consists of hardware and software.
The software can vary. The Operating System is from the Linux family. When opening the (virtual) terminal the
regular Linux commands can be executed. For convenience we usually work from an IDE (integrated
development environment) or IDLE (integrated development and learning environment). An IDE allows you to
write and run a program. We will use IDE’s with Python as its programming language. Python is a programming
language from the C++ family enriched with I/O features for connection to physical systems. Usually the
Raspberry is connected to a terminal or laptop through a network cable.

In a more advanced structure a general network is used (one or more Raspberries connected through a router
connected to the internet). Instead of the network cables a Wifi network can be used. It has advantages to have the
raspberry close to the sensor/actuator since usually the cabling between the Raspberry and the plant is more

Handout Workshop Raspberry Pi in a technical environment page 1

 Artificial Intelligence (neural networks)

computers in
social environment

(phones, cameras, etc.)

computers in
technical env.

(sensors, actuators)

computers in
administrative env.
(databases linked)

computer in everything - small, cheap and with wifi/bluetooth

major
developments

mailto:hendrikschris@yahoo.com

complex than the hardware for wireless communication. The Raspberry will need a local power supply –
however, local power is needed anyway for the sensors and actuators.
For the initial programming of the Raspberry a monitor plus keyboard is convenient – although not absolutely
necessary.

3. IDE
For programming the Raspberry we use Python, an Object Oriented Programming (OOP) language.
The easiest introduction to Python is through an IDE (Integrated Development Environment). Through the
raspberry icon and selecting ‘programming’ you can choose an IDE (Python 3 IDLE or Thonny).
The IDE gives you a REPL (Read-Evaluate-Print-Loop) which is a prompt for entering Python commands. As it's
a REPL you even get the output of commands printed to the screen without using print. We can use this REPL to,
among many other things, interpret variables or do math. For example:
>>> 1 + 2
3
>>> name = "Sarah"
>>> "Hello " + name
'Hello Sarah'

Alternatively you can write a program with the text editor and run (or debug) it afterwards.

4. Python programs in IDLE
To create a Python program (which is simply a text file) in the Python IDLE, click File > New File and you'll be
given a blank window (in Thonny the blank window is already there). This is an empty file, not a Python prompt.
You write a Python file in this window, save it, then run it and you'll see the output in the other window.

For example, in the text window, type:
n = 3
m = 16
print(“The sum is “,n+m)

Then save this file (File > Save) and run (Run > Run Module) and you'll see the output in your original Python
window. You can also choose Debug to have it checked for errors (bugs) first.

5. Basic Python code
Indentation

Handout Workshop Raspberry Pi in a technical environment page 2

https://sites.google.com/a/odu.edu/tmcle307t/multimodal-technology-overview/affordances
https://pihw.files.wordpress.com/2013/04/directconnect1.png

Python uses indentation to show that code belongs to an earlier statement (nesting). Use the TAB key to get the
proper indentation. For example a for loop in Python:
for i in range(10): # i starts at 0 and is incremented every loop until i=9
 print("Hello") # this print loop is executed with i=9 for the last time

 print(i)
Also check what happens when you leave out one or both of the indentation.

Variables
To save a value to a variable, assign it like this:
name = "Bob" # the type str (string) is assigned automatically
age = 15 # the type int (integer) is assigned automatically
print (name,”is”,age,”years old”)

Comments
Comments are ignored in the program but are there for you to leave notes. They are denoted by the hash #
symbol. Multi-line comments can also use triple quotes like this:
"""
This is a very simple Python program that prints "Hello".
That's all it does.
"""

If statements
You can use if statements for control flow:
name = "Joe" # or choose any other name
if len(name) > 3: # ‘len’ is a standard function returning the length of a text variable
 print("Nice name,”,name)
else:
 print("That's a short name,",name)

While statement
The while statement also controls the program flow (it allows creating a loop like the ‘for’-loop):
counter = 10
while (counter>0):
 print("hi")
 counter=counter-1

will print 'hi' ten times.

Functions
The syntax of a function is:
def functionname(parameters):
 # function documentation
 function_suite
 return [expression]
Once the basic structure of a function is finalized, you can execute it by calling it from another function or
directly from the Python prompt. Following is the example to call the function printme():

def printme(str):
 # This prints a string passed into this function as a parameter
 print(str)
 return;
printme("I'm first call to user defined function!") # Now you call printme
printme("Again second call to the same function") # you call printme again

When the above code is executed, it produces the following result:
I'm first call to user defined function!

Handout Workshop Raspberry Pi in a technical environment page 3

Again second call to the same function

You can return a value from a function as follows:
Function definition is here
def sum(arg1, arg2): # Add both the parameters and return them.
 total = arg1 + arg2
 print ("Inside the function : ", total)
 return total;
Now you can call sum function
result_addition = sum(10, 20);
print ("Outside the function : ", result_addition)

When the above code is executed, it produces the following result −
Inside the function : 30
Outside the function : 30

Exception handling
Assuming we want to ask the user to enter an integer number. If we use input(), the input will be a string, which
we have to cast into an integer. If the input has not been a valid integer, we will generate (raise) a ValueError. We
show this in the following interactive session:
>>> n = int(input("Please enter a number: "))
Please enter a number: 23.5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '23.5'

With the aid of exception handling, we can write robust code for reading an integer from input:
while True:
 try:
 n = input("Please enter an integer: ")
 n = int(n)
 break
 except ValueError:
 print("No valid integer! Please try again ...")
print ("Great, you successfully entered an integer!")

It's a loop, which breaks only, if a valid integer has been given.
The example script works like this:
The while loop is entered. The code within the try clause will be executed statement by statement. If no exception
occurs during the execution, the execution will reach the break statement and the while loop will be left. If an
exception occurs, i.e. in the casting of n, the rest of the try block will be skipped and the except clause will be
executed. The raised error, in our case a ValueError, has to match one of the names after except. In our example
only one, i.e. "ValueError:". After having printed the text of the print statement in the except-block, the execution
does another loop. It starts with a new input(). The loop continues indefinitely until the break is executed.

6. Switching a LED using the Raspberry PI
This experiment demonstrates how to attach a LED to the
expansion connector on your Raspberry PI and to make it
blink with a simple Python program.

In order to switch a LED on and off programmatically we
need to connect it between a general-purpose input/output pin (GPIO pin) and the ground. A resistor is necessary
to limit the current.

Handout Workshop Raspberry Pi in a technical environment page 4

LED

Build the following circuit
- the long pin of the LED is connected to a GPIO pin (the long pin needs a high voltage for the LED to conduct);
you can choose any GPIO input/output pin – let's take pin 3 (see appendix 1: overview 'GPIO pin numbering’);
- the short pin of the LED is connected to ground through a resistor (any resistor between 300 and 500 Ohm will
do).

Now we need to make the GPIO pin an output and change the state of the pin between 1 and 0 to switch the LED
on and off. Type the following code into the text window (you may leave out the comments; see also Appendix 2
GPIO and other libraries):
import RPi.GPIO as GPIO # Import GPIO library
GPIO.setmode(GPIO.BOARD) # Use board pin numbering
GPIO.setup(3,GPIO.OUT) # Setup GPIO Pin 3 to OUT
GPIO.output(3,True) # Turn on GPIO pin 3

Run your program. You should see your LED light up (notice that even when the output is not ‘True’ the LED
might shine slightly; this is because of the internal pull-up resistor of the port).
We just told the RPi to supply voltage (+3.3v) to our circuit using GPIO pin 3. Change the program by making
pin 3 False (= 0 Volt) and run the program again.
A warning was given since the GPIO port was still in use . This can be avoided by adding GPIO.cleanup() at the
end of your program.

7. Blinking Light
Here is a slightly more advanced script that blinks the led on and off. The only real difference is that we are
gathering user input and using the sleep function to set the amount of time the light is on or off.
Type the following code into the window (the comments are optional):
import RPi.GPIO as GPIO # Import GPIO library
import time # Import 'time' library.
GPIO.setmode(GPIO.BOARD) # Use board pin numbering
GPIO.setup(3, GPIO.OUT) # Setup GPIO Pin 3 to OUT

Define a function named Blink()
def Blink(numTimes,timeOn,timeOff):

for i in range(0,numTimes): # Run loop numTimes
print ("Iteration ",str(i+1)) # Print current loop
GPIO.output(3,True) # Switch on pin 3
time.sleep(timeOn) # Wait
GPIO.output(3,False) # Switch off pin 3
time.sleep(timeOff) # Wait

print ("Cycle done")

read total number of blinks + length of on and off time
iterations = input("Enter total number of times to blink: ")
timeOn = input("Enter time LED is on(seconds): ")
timeOff = input("Enter time LED is off(seconds): ")
Start Blink() function. Convert user input from strings to
numeric data types and pass to Blink() as parameters
Blink(int(iterations),float(timeOn),float(timeOff))
GPIO.cleanup()

Adjust the program in such a way that after a complete cycle of going on and off the given number of times, there
follows another complete cycle with a period that is twice as long.

8. Switch
Use a switch to build the following circuit. Use
GPIO pin 3 (although any other would do as
well).

Handout Workshop Raspberry Pi in a technical environment page 5

Use the following code to read the input:
import RPi.GPIO as G
import time as t
G.setmode(G.BOARD) # board numbering
G.setup(3,G.IN) # makes 3 an input
try:

while (True):
print(G.input(3)) # prints port 3
t.sleep(1)

except KeyboardInterrupt: # break loop with CTRL-C
print ('All done')

G.cleanup()

Write a program that makes the LED go on when the switch is on and go off when the switch is off.

9. Using a photoresistor as a light sensor
The photoresistor we are using has a resistance of 0.2 Mohm in dark and 2 to 5 Kohm in light (depending on the
brightness of the light). To show the effect of light we built the following circuit: from 0 V to the photoresistor
and from the other side of the photoresistor to port 40 (we use port 40 because this one does not have an internal
pull-up or pull-down). From this port also through a 10 Kohm resistor to 3.3 V. The light sensor acts as a switch:
it has a high resistance when in the dark and a lower resistance when in the light. Run the same program as in
exercise 8 (port 40 is programmed input). Light will make the input low.
How can you adjust the device so that it has a hysteresis (the dark → light transition is at a higher light intensity
as compared to the light → dark transition)?

10. PWM (pulse width modulation)

PWM is used in many systems. It means that a
periodic signal is high for a a certain part of the
cycle and low for the rest of it. The percentage of
time that the signal is high is called the duty
cycle.
By having a frequency of 50Hz or more and
varying the duty cycle the average voltage is
varied so we can use PWM to dim a light.

In the following example we use pin 3 as an
output. The output is connected through a
resistor of 330 Ohm and a LED to ground.
PWM is available through the GPIO library.
Let’s take a PWM signal at the output port 3 of 1
Hz. We create a PWM instance (object) on pin 3

with a 1 Hz signal with the GPIO command (see Appendix 3) pwm=GPIO.PWM(3,1) whereby pwm is an
arbitrary name. With pwm.start and pwm.ChangeDutyCycle we can set and change the duty cycle (i.e the
percentage of time the LED is on and off). Lets start with a duty cycle of 25 %:

import RPi.GPIO as G
import time as t
G.setmode(G.BOARD)
G.setup(3,G.OUT) # pin 3 is connected to the LED through a resistor
pwm=G.PWM(3,1)
pwm.start(25)
t.sleep(10)
pwm.stop()
G.cleanup()

Handout Workshop Raspberry Pi in a technical environment page 6

See what happens if we change the duty cycle to 60 % after 10 sec. using the command
pwm.ChangeDutyCycle(60) and including another sleep period.
Try other values for the duty cycle.
Write a program that makes the light slowly go brighter and then slowly dim again by taking a PWM signal of 50
Hz and varying the duty cycle.

Measure with the Volt-Amperemeter the power taken by the LED+ resistor.

Replace the LED with a small speaker and give output 3 a PWM signal with a frequency of 50 Hz and a duty
cycle of 50%. What happens if you change the frequency keeping the duty cycle the same (use
ChangeFrequency(freq) to change the frequency)?

A. The Raspberry Pi and mechanics

A1. Controlling a dc motor
The Raspberry can not supply the current for running a motor.
Therefore we use an separate 5 V power supply and the L293D to
control the motor (the L293D can control two motors in direction and
speed; we will however use it for only one motor, running in one
direction and with a constant speed). We make the following
connections to the L293D
1 to 3.3 V of Raspberry;
2 to common GND (Raspberry and motor);
3 and 6 go to the motor (3 to black and 6 to red);
4 and 5 to common GND;
7 to the output port (eg port 3) of Raspberry
8 and 16 go to the separate power supply
This time we will enter commands in the Python shell (although you
could also run the commands as a program of course).
Enter:
import RPi.GPIO as GPIO
GPIO.setmode (GPIO.BOARD)
GPIO.setup(3,GPIO.OUT)
GPIO.output(3,True)

The motor starts running now.
As soon as you enter GPIO.output(3,False) the motor stops again.
Write a program that starts the motor when you enter 'go' and stops the motor after 5 seconds.

A2. Moving a robot arm

The 3 DOF (degrees of freedom) robot arm uses 3
servo motors.
The position of the servo motor is set by a PWM
signal based on a frequency of 50 Hz. With a duty
cycle of 5 the servo angle will be minimum, if the
duty cycle is 7.5 the servo will be at its center position
(90 degrees) and if it is 10 it will be at its maximum.

Handout Workshop Raspberry Pi in a technical environment page 7

Let us take an accuracy of 3.6 degrees. A change in position of 3.6 degrees corresponds with a change in pulse
width of 0.02 ms which is equal to a change in duty cycle of 0.1.
Connect any servo (red: positive of external power supply; black: ground of external power supply and
Raspberry; yellow: PWM input signal). We will use port 3 of the Raspberry for the PWM signal.
Run the following program:
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
GPIO.setup(3,GPIO.OUT) # pin 3 is connected to the servo
pwm=GPIO.PWM(3,50) # a 50 Hz PWM signal is being used
pwm.start(5) # the servo moves to the 0 degrees position
time.sleep(5)
pwm.ChangeDutyCycle(7.5) # the servo moves to 90 degrees
time.sleep(5)
pwm.ChangeDutyCycle(10) # the servo moves to 180 degrees
time.sleep(5)
pwm.stop() # the PWM signal is stopped
GPIO.cleanup()

Now to make the servo start at the middle position and than move 3 steps of 3.6 degrees to the right we can use
the following code lines (include a ‘sleep’ time where necessary):
pwm.start(7.5)
pwm.ChangeDutyCycle(7.5+3*0.1) # 3.6 degrees = 0.1 change duty cycle

Write a program that allows a user to make the servo turn first to one direction and than to the other direction.
The movement to the respective positions is controlled by repetitive pressing of keys on the keyboard. When
another key is hit the servo moves to the start position and makes the same movement automatically (hint:
register the key strokes by adding them to a ‘list’ – see appendix 6).

Make the robot arm pick up an object and place it at a predefined position. Use the keyboard to activate the
servo’s.

Write a program that registers the movement that the arm makes when controlled by the keyboard. Afterwards the
robot does the same job by itself. When you have it working optimize the path of the robot arm by activating two
servo’s at the same time and making larger steps where possible.

B. Sensors and local displays

B1. Using an LCD display with parallel input

We will import software that uses the LCD display with
the following connections to the GPIO pins (BOARD
numbering):
1 - Ground; common to the Raspberry and the separate
power supply
2 - VCC; we will use a separate 5V power supply
3 - (contrast) → connected to Ground
4 - RS → 3 Register Select; 0: Command, 1: Data
5 - (read/write select) → connected to Ground
6 - E → 5 Enable data transfer
11 - D4 → 7 databit 0
12 - D5 → 11 databit 1
13 - D6 → 13 databit 2
14 - D7 → 15 databit 3

Handout Workshop Raspberry Pi in a technical environment page 8

15 (5V) and 16 (0V) are connected to the backlight.
1. After making the connections run 'LCDdisplay.py'.
2. You can use the functions from 'LCDdisplay.py' by importing it in you code. Run the following code in the
python shell (open the shell in the folder where the program is found):
>>> import LCDdisplay as lcd
>>> lcd.lcd_init() # the screen becomes blanc
>>> lcd.lcd_string(“-any text-”,0x80) # writes a text on line 1
>>> lcd.lcd_string(“-any text-”,0xC0) # writes a text on line 2

3. You can also import 'LCDdisplay' in your program and make use of the functions. Write a program that shows
some text on the first line and blinks another text on the second line.
4. If time allows use two displays to make a news ticker (news scroll vertically over 2 displays).

B2 Temperature and humidity sensor

The DHT11 consist of a humidity sensing component, a NTC temperature sensor (or thermistor) and an IC on the
back side of the sensor.

For measuring humidity they use the humidity sensing component which has two electrodes with moisture
holding substrate between them. So as the humidity changes, the conductivity of the substrate changes or the
resistance between these electrodes changes. This change in resistance is measured and processed by the IC
which makes it ready to be read by the raspberry. For measuring temperature these sensors use a NTC
temperature sensor or a thermistor. A thermistor is actually a variable resistor that changes its resistance with
change of the temperature. These sensors are made by sintering of semiconductive materials such as ceramics or
polymers in order to provide larger changes in the resistance with just small changes in temperature. The term
“NTC” means “Negative Temperature Coefficient”, which means that the resistance decreases with increase of
the temperature.

The DHT11 sensor has four pins: (top view) 1 Vcc (= 5 V), 2 data, 3 not
connected, 4 GND. A pull-up resistor from of 10K Ohms is required to keep the
data line high and in order to enable the communication between the sensor and
the Raspberry.
The DHT11 sensors have their own single wire protocol used for transferring the
data. This protocol requires precise timing and the timing diagrams for getting
the data from the sensors can be found from the datasheets of the sensors.
However, we don’t have to worry much about these timing diagrams because we
will use the DHT library which takes care of everything.

Handout Workshop Raspberry Pi in a technical environment page 9

Connect the data output of the DHT11 to pin 40 of the Raspberry (pin 40 = GPIO21; the software we will use
uses BMC numbering) and test the following software:

import Adafruit_DHT
import RPi.GPIO as GPIO
import time

i=0
while (i<10):
 humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT11, 21)
 # Adafruit_DHT.DHT11 is the type of sensor; 21 is the BMC GPIO number
 humidity = round(humidity, 2)
 temperature = round(temperature, 2)

 if humidity is not None and temperature is not None:
 print ("Temperature: ",temperature)
 print ("Humidity: ",humidity)
 else:
 print ("No data received")
 time.sleep(3)
 i=i+1

See what happens when you breathe over the sensor.
Adjust the program in such a way that temperature and humidity are displayed on the LCD display (hint: to
convert the variable ‘temp’ into a string use str(temp); to concatenate two strings use “temperature “+ str(temp)).
If time allows add a second display in such a way that an alarm is given whenever the temperature or the
humidity gets over or under a certain value.

C. Communication
The raspberry Pi has on-board Wifi and Bluetooth. Wifi requires a router but allows ‘unlimited’ connection to the
rest of the world. Bluetooth has a more local focus. It allows one-to-one communication up to hundred meters at
a data rate of 1 to 3 Mbps. The Raspberry Pi uses Bluetooth Low Energy (BLE) which has a slightly lower
bandwidth.

Bluetooth programming in Python follows the
socket programming model (like IP). In this model,
a socket represents an endpoint of a
communication channel. Sockets are not connected
when they are first created, and are useless until a
call to either connect (client application) or
accept (server application) completes
successfully. Once a socket is connected, it can be

used to send and receive data until the connection fails due to link error or user termination.

The class ‘socket’ is a predefined Python class in the Raspberry Pi. By importing it we have all the
communication methods available (for Bluetooth but also for TCP/IP and other protocols). A bluetooth address is
represented as a string of the form “xx:xx:xx:xx:xx:xx”, where each x is a hexadecimal character; xx represents
one octet of the 48-bit address. Bluetooth devices will always be identified using an address string of this form.
Choosing a device really means choosing a bluetooth address. If only the user-friendly name of the target device
is known, then two steps must be taken to find the correct address. First, the program must scan for nearby
Bluetooth devices. Next, the program uses the routine lookup_name() to connect to each detected device,
requests its user-friendly name, and compares the result to the target name.

The following examples show how to establish a connection using an RFCOMM socket, transfer some data, and
disconnect.

Handout Workshop Raspberry Pi in a technical environment page 10

Server:
import socket # socket is a predefined class on the Pi
hostMACaddress = 'B8:27:EB:01:D4:6D'
port = 3 # this is an arbitrary choice
backlog = 1 # the server listens to 1 client at a time
size = 1024 # max. size data packets

s = socket.socket(socket.AF_BLUETOOTH, socket.SOCK_STREAM, socket.BTPROTO_RFCOMM)
a socket object is created
socket.AF_BLUETOOTH – (Address Family) bluetooth
socket.SOCK_STREAM – type of connections
socket.BTPROTO_RFCOMM – address is string and port is number

s.bind((hostMACaddress, port)) # socket object connects to client
s.listen(backlog) # socket object listens to 1 client at a time
print("We are waiting for data..")
client, address = s.accept() # connection accepted; new object ‘client’
inst.
data = client.recv(size) # data received
data = data.decode('UTF-8') # decode from UTF-8 to string
print (data)
print("done and closing the socket")
client.close()
s.close()

Client:
import socket
serverMACAddress = 'B8:27:EB:01:D4:6D'
port = 3
s = socket.socket(socket.AF_BLUETOOTH, socket.SOCK_STREAM, socket.BTPROTO_RFCOMM)
s.connect((serverMACAddress,port))
message = ("a")
s.send(bytes(message, 'UTF-8'))
print("data sent")
s.close()

The server-socket that is used to accept incoming connections must be attached to operating system resources
with the bind method. ‘bind’ takes in a tuple specifying the address of the local Bluetooth adapter to use and a
port number to listen on. Once a socket is bound, a call to listen puts the socket into listening mode and it is
then ready to accept incoming connections.
The client-socket that is used to establish an outgoing connection connects to its target with the connect
method, which also takes a tuple specifying an address and port number. In the example above the client tries to
connect to the Bluetooth device with address ‘ B8:27:EB:86:E6:F4’ on port 3.

- Write a client or server program based on Bluetooth sockets to enter a text on the keyboard of one Raspberry Pi
system (client) and display it on the screen of the other system (server).
- Modify the programs for client and server in such a way that the server replies the client with some text.
- Modify the programs in such a way that the humidity is measured by the server after a request from the client,
sent to the client and displayed on the screen of the client.
- If time allows modify the programs in such a way that one client requests the humidity measurement from two
or three servers.

D. Using a camera

First of all, with the Pi switched off, you’ll need to connect the Camera Module to the Raspberry Pi’s camera
port, then start up the Pi and ensure the software is enabled (sudo raspi-config; Interfacing Options; Camera).

Handout Workshop Raspberry Pi in a technical environment page 11

Enter the following code:

from picamera import PiCamera # import the class PiCamera from the picamera library
import time
camera = PiCamera() # an object ‘camera’ is created
camera.start_preview() # the lens is opened
time.sleep(2) # 2 sec are given for adjusting parameters
camera.capture('/home/pi/Desktop/image.jpg') # a picture is taken
camera.stop_preview() # the lens is closed

You can rotate the image by 90, 180, or 270 degrees by including: camera.rotation = 180 (or any other value).
You can view the picture from the (raspberry) desktop, ie the path given in the capture method.

Now try adding a loop to take five pictures in a row:

for i in range(5):
time.sleep(2)
camera.capture('/home/pi/Desktop/image%s.jpg' % i)

The variable i contains the current iteration number, from 0 to 4, so the images will be saved as image0.jpg,
image1.jpg, and so on.

Use the motion detector to have the
sequence of pictures start when movement
is detected (‘power’ can be connected to the
5 V of the Raspberry Pi; the output turns
high when motion is detected).
Turn ‘Time Delay Adjust’ - the time the
output remains high after detecting motion
– fully left (minimum = 3 seconds). After
being set to 1 and returned to 0 the output
remains 0 for 3 seconds.
Turn ‘Sensitivity Adjust’ - the distance over
which motion is detected – fully left
(minimum = 3 meter). Use a GPIO port
without a pull up resistor (eg port 40). Test
the motion detector separately first.

Run the software first in the polling mode
and after that in the interrupt mode (see
appendix 5; first test the interrupt software separately).

In control situations a picture or video would usually be analyzed with software based on Artificial Intelligence.
Deep Learning (often based on Neural Networks) is rapidly gaining popularity.

E. Distance measurement

Use the Raspberry Pi distance sensor (ultrasonic sensor HC-SR04). It sends an ultrasonic pulse and receives it.
The timing of this process is received from and passed on to the Raspberry Pi. Apart from the 5 V power supply
and ground it uses an output from the Pi (trigger) and supplies an input to the Pi (echo). ‘Echo’ is a 5 V output
from the sensor so a voltage divider (eg 1K and 2K) is to be used (the inputs for the Pi should have a 3.3 V
maximum).

Handout Workshop Raspberry Pi in a technical environment page 12

The HC-SR04 sensor requires a short 10 μsec pulse to trigger the module, which will cause the sensor to start the
ranging program (8 ultrasound bursts at 40 kHz) in order to obtain an echo response. So, to create our trigger
pulse, we set the trigger pin high for 10 μsec then set it low again.
Now that we’ve sent our pulse signal we need to listen to our input pin, which is connected to ECHO. The sensor
sets ECHO to high for the amount of time it takes for the pulse to go and come back, so our code therefore needs
to measure the amount of time that the ECHO pin stays high. We use the “while” string to ensure that each signal
timestamp is recorded in the correct order. The time.time() function will record the latest timestamp for a given
condition. For example, if a pin goes from low to high, and we’re recording the low condition using the
time.time() function, the recorded timestamp will be the latest time at which that pin was low.
Our first step must therefore be to record the last low timestamp for ECHO (pulse_start) e.g. just before the return
signal is received and the pin goes high. After that we need the last high timestamp for ECHO (pulse_end).

We will take the speed of sound to be 343 m/s (although it it is variable, depending on what medium it’s traveling
through, in addition to the temperature of that medium).
We also need to divide our time by two because what we’ve calculated above is actually the time it takes for the
ultrasonic pulse to travel the distance to the object and back again.

import RPi.GPIO as GPIO # import libraries
import time
GPIO.setmode(GPIO.BOARD)
TRIG = 3 # give a name to GPIO Pins
ECHO = 5
GPIO.setup(TRIG,GPIO.OUT) # set GPIO direction (IN / OUT)
GPIO.setup(ECHO,GPIO.IN)

print ("Distance Measurement In Progress")
GPIO.output(TRIG, False)
print ("Waiting For Sensor To Settle")
time.sleep(2)
GPIO.output(TRIG, True) # a short pulse is given to start the measurement
time.sleep(0.00001)
GPIO.output(TRIG, False)
while GPIO.input(ECHO)==0: # the start of the echo pulse is measured

pulse_start = time.time()
while GPIO.input(ECHO)==1: # the end of the echo pulse is measured

pulse_end = time.time()
pulse_duration = pulse_end - pulse_start # pulse duration is calculated
distance = pulse_duration * 17150 # distance is calculated
distance = round(distance, 2) # we round the distance in 2 decimal places
print ("Distance:",distance,"cm")
GPIO.cleanup()

Handout Workshop Raspberry Pi in a technical environment page 13

What is the accuracy of the measurement device? How can the device be calibrated?

F. Threading

Programs, Processes and Threads are three basic concepts of the operating systems. A program is an executable
file usually stored on a disk or a secondary memory on your computer. It contains the set of instructions written
to perform a specific job on your computer. A process is an executing instance of a program. A thread is the
smallest executable unit of a process. A process can have multiple threads.
In the program that activates multiple threads you need to import the treading module. We will also import time
to create delays. To use a variable in multiple threads it must be defined as global.

from threading import Thread
import time
global cycle # cycle is defined as global variable
cycle=0 # cycle gets the initial value 0
class Hello5Program: # the class Hello5Program is defined
 def __init__(self): # the initialization method is defined
 self.thread_running= True
 def terminate(self): # the termination method is defined
 self.thread_running = False
 print(" 5 sec thread terminated")
 def run(self): # the method that is being executed as main code is
defined
 global cycle # the same variable as in the mail thread is used
 while (self.thread_running):
 time.sleep(5)
 cycle = cycle + 5
 print ("5 Second Thread cycle + 5: ", cycle)
FiveSecond = Hello5Program() # create instance of previously defined class
FiveSecondThread = Thread(target=FiveSecond.run) # create thread
FiveSecondThread.start() # start thread
Exit = False # exit flag
while Exit==False:
 cycle = cycle + 1
 print ("Main Program increases cycle + 1: ", cycle)
 time.sleep(1) # one second delay
 if (cycle > 50): Exit = True # exit program

FiveSecond.terminate() # terminate the thread by calling the terminate method
time.sleep(6) # an delay is included to make sure the
FiveSecondThread has finished
print ("Goodbye :)")

The program output shows the increase of cycle by 1 then by 5 when the thread runs. Both threads (main and
FiveSecondThread) modify the variable ‘cycle’ and print the value. The extra delay after termination of the
FiveSecondThread makes sure that the main program finishes after FiveSecondThread (FiveSecondThread makes
a another complete cycle after execution of the terminate method).

Many threads can be created to do different functions. A thread can call any function in the main program.
Sensors can be read, a request from another station through the network can be handled or other actions can be
taken while the main program or other threads run at the same time.

Modify the program in such a way that a LED continues blinking while a new value for the frequency can be
entered at any time. (hint: the blinking code runs in a separate thread; the main program communicates with the
user; a global variable is used for the frequency).

Handout Workshop Raspberry Pi in a technical environment page 14

Appendix 1 GPIO pin numbering – Raspberry Pi 3B; resistor colour code; volt-ampere meter

Handout Workshop Raspberry Pi in a technical environment page 15

Appendix 2 GPIO and other libraries

To import the RPi.GPIO module:
import RPi.GPIO as GPIO
By doing it this way, you can refer to it as just GPIO (you can use any name) through the rest of your script.
There are two ways of numbering the IO pins on a Raspberry Pi within RPi.GPIO. The first is using the BOARD
numbering system. This refers to the pin numbers on the P1 header of the Raspberry Pi board. The other one is
BCM which is an internal numbering. We will use BOARD.

To specify which one you are using (mandatory):
GPIO.setmode(GPIO.BOARD)

It is possible that you have more than one script/circuit on the GPIO of your Raspberry Pi. As a result of this, if
RPi.GPIO detects that a pin has been configured to something other than the default (input), you get a warning
when you try to configure a script. To disable these warnings:
GPIO.setwarnings(False)

You need to set up every GPIO pin (channel) you are using as an input or an output. To configure a channel as an
input:
GPIO.setup(channel, GPIO.IN)
To set up a channel as an output:
GPIO.setup(channel, GPIO.OUT)
You can also specify an initial value for your output channel:
GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

To read the value of a GPIO pin:
GPIO.input(channel)
To set the output state of a GPIO pin:
GPIO.output(channel, state) # state can be 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

At the end of any program, it is good practice to clean up any resources you might have used. This is no different
with RPi.GPIO.
GPIO.cleanup()

To create a PWM instance:
p = GPIO.PWM(channel, frequency)
To start PWM:
p.start(dc) # where dc is the duty cycle (0.0 <= dc <= 100.0)
To change the frequency:
p.ChangeFrequency(freq) # where freq is the new frequency in Hz
To change the duty cycle:
p.ChangeDutyCycle(dc) # where 0.0 <= dc <= 100.0
To stop PWM:
p.stop()

To import the time module: import time
The method sleep() suspends execution for the given number of seconds. The argument may be a floating point
number to indicate a more precise sleep time.
time.sleep(t) # t in seconds

Handout Workshop Raspberry Pi in a technical environment page 16

Appendix 3 Python objects and classes

Python is an object-oriented programming language. Object-oriented programming (OOP) focuses on creating reusable
patterns of code, in contrast to procedural programming, which focuses on explicit sequenced instructions. When working
on complex programs in particular, object-oriented programming lets you reuse code and write code that is more readable,
which in turn makes it more maintainable.
One of the most important concepts in object-oriented programming is the distinction between classes and objects, which
are defined as follows:

• Class — A blueprint created by a programmer for an object. This defines a set of attributes that will characterize
any object that is instantiated from this class.

• Object — An instance of a class. This is the realized version of the class, where the class is manifested in the
program.

Classes and objects are used to create patterns (in the case of classes) and then make use of the patterns (in the case of
objects).

Classes
Classes are like a blueprint or a prototype that you can define to use to create objects.
We define classes by using the class keyword, similar to how we define functions by using the def keyword.
Let’s define a class called Shark that has two functions associated with it, one for swimming and one for being awesome:

class Shark:
 def swim(self):
 print("The shark is swimming.")
 def be_awesome(self):
 print("The shark is being awesome.")

Because these functions are indented under the class Shark, they are called methods. Methods are a special kind of
function that are defined within a class.
The argument to these functions is the word self, which is a reference to objects that are made based on this class. To
reference instances (or objects) of the class, self will always be the first parameter, but it need not be the only one.
Defining this class did not create any Shark objects, only the pattern for a Shark object that we can define later. That is,
if you run the program above at this stage nothing will be returned.
Creating the Shark class above provided us with a blueprint for an object.

Objects
An object is an instance of a class. We can take the Shark class defined above, and use it to create an object or instance of
it. We’ll make a Shark object called sammy:
sammy = Shark()
Here, we initialized the object sammy as an instance of the class by setting it equal to Shark().

Now, let’s use the two methods with the Shark object sammy:
sammy = Shark()
sammy.swim()
sammy.be_awesome()
The Shark object sammy is using the two methods swim() and be_awesome(). We called these using the dot operator
(.), which is used to reference an attribute of the object. In this case, the attribute is a method and it’s called with
parentheses, like how you would also call with a function.
Because the keyword self was a parameter of the methods as defined in the Shark class, the sammy object gets passed to
the methods. The self parameter ensures that the methods have a way of referring to object attributes.
When we call the methods, however, nothing is passed inside the parentheses, the object sammy is being automatically
passed with the dot operator.
Let’s add the object within the context of a program:
class Shark:
 def swim(self):
 print("The shark is swimming.")
 def be_awesome(self):

Handout Workshop Raspberry Pi in a technical environment page 17

 print("The shark is being awesome.")
sammy = Shark()
sammy.swim()
sammy.be_awesome()

Let’s run the program to see what it does. The output we will get is:
The shark is swimming.
The shark is being awesome.

Passing parameters
Let’s create a class that uses a name variable that we can use to assign names to objects. We’ll pass ‘name’ as a parameter.
By setting self.name equal to name we can use the name internally:
class Shark:
 def __init__(self, name): # the underscores indicate that ‘init’ is predefined
 self.name = name
 def swim(self): # Reference the name
 print(self.name," is swimming.")
 def be_awesome(self): # Reference the name
 print(self.name," is being awesome.")
sammy = Shark("Sammy") # __init__() is invoked automatically
sammy.swim()
sammy.be_awesome()
We can run the program now and the output will be:
Sammy is swimming.
Sammy is being awesome.
We see that the name we passed to the object is being printed out. We defined the __init__ method with the parameter
name (along with the self keyword) and defined a variable within the method.
If we wanted to add another parameter, such as age, we could do so by also passing it to the __init__ method:
class Shark:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Then, when we create our object sammy, we can pass Sammy’s age in our statement:
sammy = Shark("Sammy", 5)

Working with More Than One Object
Classes are useful because they allow us to create many similar objects based on the same blueprint.
To get a sense for how this works, let’s add another Shark object to our program:
class Shark:
 def __init__(self, name):
 self.name = name
 def swim(self):
 print(self.name," is swimming.")
 def be_awesome(self):
 print(self.name," is being awesome.")
sammy = Shark("Sammy")
sammy.be_awesome()
stevie = Shark("Stevie")
stevie.swim()

We have created a second Shark object called stevie and passed the name "Stevie" to it. In this example, we used the
be_awesome() method with sammy and the swim() method with stevie.
Let’s run the program. It will give the output
Sammy is being awesome.
Stevie is swimming.
The output shows that we are using two different objects, the sammy object and the stevie object, both of the Shark class.
Classes make it possible to create more than one object following the same pattern without creating each one from scratch.

Handout Workshop Raspberry Pi in a technical environment page 18

Appendix 4 LCDdisplay.py

The program consists of the following components:
- imports of the objects we are going to use
- some definitions to make the program more readable and maintainable
- defining functions
* main: the main program; it is composed of an initialization + an endless loop (the loop is left with an exception)
* lcd_init: initialization
* lcd_byte: transfer of a byte
* lcd_toggle_enable: a supporting function used in lcd_byte
* lcd_string: transfer of a string consisting of a number of bytes
- the actual program consisting of a call to ‘main’, the code to be executed with an exception and the termination.

import RPi.GPIO as GPIO #import of GPIO module from RPi library
import time # import of time module

Define GPIO to LCD mapping
LCD_RS = 3 # Register Select: low = command, high = data
LCD_E = 5 # Enable (toggling this input means data is being transfered)
LCD_D4 = 7 # the next 4 inputs carry the data
LCD_D5 = 11
LCD_D6 = 13
LCD_D7 = 15

Define some device constants
LCD_WIDTH = 16 # Maximum characters per line
LCD_CHR = True # Register Select: high = data
LCD_CMD = False # Register Select: low = command
LCD_LINE_1 = 0x80 # LCD RAM address for the 1st line
LCD_LINE_2 = 0xC0 # LCD RAM address for the 2nd line

Timing constants
E_PULSE = 0.0005 # 2 constants to create a proper toggle signal
E_DELAY = 0.0005

def main(): # Main program block

lcd_init() # Initialize display
while True:
 lcd_string("workshop 2018",LCD_LINE_1) # Send some text to be displayed in line 1
 lcd_string("Raspberry Pi",LCD_LINE_2) # Send some text to be displayed in line 2

time.sleep(3) # 3 second delay
 lcd_string("in physical",LCD_LINE_1)
 lcd_string("environment",LCD_LINE_2)
 time.sleep(3) # 3 second delay

def lcd_init():

GPIO.setmode(GPIO.BOARD) # Use BOARD GPIO numbers
 GPIO.setup(LCD_E, GPIO.OUT) # E is set to output
 GPIO.setup(LCD_RS, GPIO.OUT) # RS is set to output
 GPIO.setup(LCD_D4, GPIO.OUT) # DB4 is set to output
 GPIO.setup(LCD_D5, GPIO.OUT) # DB5 is set to output
 GPIO.setup(LCD_D6, GPIO.OUT) # DB6 is set to output
 GPIO.setup(LCD_D7, GPIO.OUT) # DB7 is set to output
 lcd_byte(0x33,LCD_CMD) # 0011 0011 Initialize
 lcd_byte(0x32,LCD_CMD) # 0011 0010 Initialize
 lcd_byte(0x06,LCD_CMD) # 0000 0110 Cursor move direction

Handout Workshop Raspberry Pi in a technical environment page 19

 lcd_byte(0x0C,LCD_CMD) # 0000 1100 Display On,Cursor Off, Blink Off
 lcd_byte(0x28,LCD_CMD) # 0010 1000 Data length, number of lines, font size
 lcd_byte(0x01,LCD_CMD) # 0000 0001 Clear display
 time.sleep(E_DELAY)

def lcd_byte(bits, mode):
 GPIO.output(LCD_RS, mode) # selects for command or data
 GPIO.output(LCD_D4, False) # make data inputs 0
 GPIO.output(LCD_D5, False)
 GPIO.output(LCD_D6, False)
 GPIO.output(LCD_D7, False)
 if bits&0x10==0x10: GPIO.output(LCD_D4, True) #make the data input 1 if corresponding bit is 1
 if bits&0x20==0x20: GPIO.output(LCD_D5, True)
 if bits&0x40==0x40: GPIO.output(LCD_D6, True)
 if bits&0x80==0x80: GPIO.output(LCD_D7, True)

 lcd_toggle_enable() # Toggle 'Enable' pin

 GPIO.output(LCD_D4, False) # same as above for low bits
 GPIO.output(LCD_D5, False)
 GPIO.output(LCD_D6, False)
 GPIO.output(LCD_D7, False)
 if bits&0x01==0x01: GPIO.output(LCD_D4, True)
 if bits&0x02==0x02: GPIO.output(LCD_D5, True)
 if bits&0x04==0x04: GPIO.output(LCD_D6, True)
 if bits&0x08==0x08: GPIO.output(LCD_D7, True)

 lcd_toggle_enable() # Toggle 'Enable' pin

def lcd_toggle_enable(): # Toggle enable
 time.sleep(E_DELAY)
 GPIO.output(LCD_E, True) # E goes up
 time.sleep(E_PULSE)
 GPIO.output(LCD_E, False) # E goes down
 time.sleep(E_DELAY)

def lcd_string(message,line): # Send string to display
 message = message.ljust(LCD_WIDTH," ") # text is left justified with spaces added
 lcd_byte(line, LCD_CMD) # sends the code for line 1 or line 2 as a command
 for i in range(LCD_WIDTH): # sends the characters one by one
 lcd_byte(ord(message[i]),LCD_CHR) # ‘ord(message[i]’ is the character at position i

if __name__ == '__main__': # if object is started as a program the code that follows is executed
 try:
 main() # call the main function
 except KeyboardInterrupt: # pressing a key causes a keyboard interrupt
 pass # with a keyboard interrupt the loop is left
 finally: # the code in the finally clause is always executed
 lcd_byte(0x01, LCD_CMD) # command ‘clear display’ is sent
 lcd_string("Goodbye!",LCD_LINE_1) # text is sent
 GPIO.cleanup() # all ports used in program are set to input (safer)

Handout Workshop Raspberry Pi in a technical environment page 20

Appendix 5 Interrupt Driven Objects
When we are waiting for an action to take place – ie a GPIO pin to change state – we can poll the pin
permanently using an infinite loop, but that utilizes a lot of CPU power and makes it even impossible to use the
computer for other tasks. There is however another way to deal with this kind of situations: interrupt based
software objects.
GPIO interrupts allow a program to wait for GPIO events. Instead of repeatedly checking a pin, the code waits
for a pin to be triggered, essentially using zero CPU power. Interrupts are known as “edge detection”; an edge
defining the transition from high to low “falling edge” or low to high “rising edge”. A change in state, or
transition between low and high, is known as an “event”.

How do we detect an interrupt? Obviously looping to check for an interrupt would defeat the point of using it, we
would be “polling” the interrupt function instead of the GPIO pin. However, computers have in hardware and
system software a function implemented that stops the program until the event occurs (no CPU time is wasted
since other programs can still run) or starts a “call-back” function as soon as an interrupt occurs (the main
program can continue with other things).
The following example illustrates what is happening: suppose you are waiting for a letter: polling is the act of
you waiting at home all day, holding open the letter box and peering out waiting for the postman to arrive. An
interrupt in this scenario would be a camera that watches the street for the postman. When it spies the postman it
calls your mobile phone (the call-back) to let you know the postman is 10 minutes from your doorstep.

Let us take the example of some action to be taken as soon as motion is detected (no other work is done by this
program):

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
EVENT_PIN = 3
GPIO.setup(EVENT_PIN, GPIO.IN)
print ("PIR Module Test (CTRL+C to exit)")
time.sleep(2)
GPIO.wait_for_edge(3, GPIO.BOTH) # alternatively: GPIO.RISING or GPIO.FALLING
print ("Motion Detected”)
GPIO.cleanup()

Alternatively the program can continue with other activities and when the event occurs a ‘sidestep’ is taken to the
interrupt routine (‘MOTION’ is our call-back function):

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
EVENT_PIN = 3
GPIO.setup(EVENT_PIN, GPIO.IN)
def MOTION(PIR_PIN): # 1 parameter is transferred when called
 print ("Motion Detected at pin ",PIR_PIN)
print ("PIR Module Test (CTRL+C to exit)")
time.sleep(2)
print ("Ready")
try:
 GPIO.add_event_detect(EVENT_PIN, GPIO.BOTH, callback=MOTION) # EVENT_PIN is passed as

parameter to the callback function
 while 1: # a loop is used here but anything can be done
 time.sleep(100) # instead
except KeyboardInterrupt:
 print ("Quit")
 GPIO.cleanup()

Handout Workshop Raspberry Pi in a technical environment page 21

Appendix 6 Lists in Python

Python Lists
The list is a most versatile datatype available in Python which can be written as a list of comma-separated values
(items) between square brackets. Important thing about a list is that items in a list need not be of the same type.
Creating a list is as simple as putting different comma-separated values between square brackets. For example −
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = ["a", "b", "c", "d"]
Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Accessing Values in Lists
To access values in lists, use the square brackets for slicing along with the index or indices to obtain the value
available at that index. For example −
list1 = ['physics', 'chemistry', 1997, 2000]
list2 = [1, 2, 3, 4, 5, 6, 7]
print ("list1[0]: ", list1[0])
print ("list2[1:5]: ", list2[1:5])
When the above code is executed, it produces the following result −
list1[0]: physics
list2[1:5]: [2, 3, 4, 5]

Updating Lists
You can update single or multiple elements of lists by giving the slice on the left-hand side of the assignment
operator, and you can add to elements in a list with the append() method. For example −
aList = [123, 'xyz', 'zara', 'abc'];
aList.append(2009);
print ("Updated List : ", aList)
When we run above program, it produces the following result −
Updated List : [123, 'xyz', 'zara', 'abc', 2009]

Delete List Elements
To remove a list element, you can use either the del statement if you know exactly which element(s) you are
deleting or the remove() method if you know what value to remove. For example −
list1 = ['physics', 'chemistry', 1997, 2000];
print list1
del list1[2];
print ("After deleting value at index 2 : ")
print list1
When the above code is executed, it produces following result −
['physics', 'chemistry', 1997, 2000]
After deleting value at index 2 :
['physics', 'chemistry', 2000]
Alternatively: list1.remove(1997) has the same effect.

Handout Workshop Raspberry Pi in a technical environment page 22

